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Abstract
We consider the system of three quantum waveguides coupled laterally
through small windows, and we study the breaking of geometrical symmetry.
We investigate the behaviour of the resonance asymptotics and transition
‘eigenvalue-resonance’.

PACS numbers: 72.10.−d, 02.30.Ir

1. Introduction

The problem of coupled waveguides has attracted a new wave of interest recently due to
the development of nanoelectronics. The problem of creation of new devices based on
quantum interference cannot be solved without a theoretical description of different quantum
systems. Recently, experimentalists began to produce a new class of objects: quantum dots
and antidots, quantum wires (waveguides), etc. These systems are usually called mesoscopic
systems because they are sufficiently large to be created experimentally, but sufficiently small
to demonstrate the quantum character of an electron. In these semiconductor devices, the
mean free path of the electron may be larger than the size of the system. In this situation,
physicists usually deal with a ballistic regime. The description of ballistic electron transport
in many mesoscopic quantum systems reduces to the description of electron wave propagation
in a system of waveguides or layers, see, for example, [1–5]. The problem of bound states for
laterally coupled waveguides has recently attracted a new wave of interest.

In this paper we deal with systems of two-dimensional waveguides coupled through small
apertures. Let �+,�− be two waveguides of widths d+, d− coupled laterally through a small
window of width 2a. It has been proven in [6] that the Dirichlet Laplacian for this system has
an eigenvalue λa close to the threshold. It can be estimated as

c1a
4 � π2

d2
+

− λa � c2a
4 (1)

for sufficiently small a (the order of this term was found in [7] on a physical level of rigor).
Here c1, c2 are some constants, d+ > d−. The authors used a variational technique and
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Figure 1. (a) Geometrical configuration of the system: �1,�2,�3 are the waveguides, and
X12, X23 are the centres of the coupling windows �12, �23, respectively. (b) Geometrical
configuration for the reduced problems: D(N) marks the type of boundary condition, Dirichlet
(Neumann). (c) Branches of the continuous spectra of the operators for the reduced problems.

obtained only estimates and not asymptotics. Analogous estimates were obtained for the
case of n coupling windows [8]. The asymptotics of the eigenvalue in question was obtained
in [9, 10]. Some further results can be found in [11]. The method of matching of the asymptotic
expansions (in a) for the corresponding solutions was used. The scheme of matching was
a modification of that suggested in [12, 13]. The problem of resonance (quasi-eigenvalue)
was considered in [14]. The asymptotics of resonances close to the Nth threshold is obtained
for the problem of two coupled waveguides. It is very important for physical applications
to investigate the behaviour of the resonance and the possibility of its transformation
in the eigenvalue (see, for example, [15, 16]). The present paper is devoted to this
problem.

We consider the spectral problem for the Dirichlet Laplacian −� in three two-dimensional
strips �1,�2 and �3 of widths d1, d2 and d3, respectively, coupled through apertures of widths
2a (figure 1(a)). If d1 = d3, the main space H can be represented as an orthogonal sum,
H = Ha ⊕ Hs , where Ha(Hs ) is a subspace of antisymmetric (symmetric) in respect to the
centreline of �2 functions. These subspaces are invariant subspaces of the Dirichlet Laplacian,
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consequently we have the corresponding representation of the operator: −� = −�a ⊕ �s .
Hence, the problem, actually splits into two boundary problems, each for two coupled strips
(figure 1(b)) (with the Dirichlet or Neumann boundary condition on the former centreline). The
spectra of the corresponding operators (−�a,−�s) are shown in figure 1(c). It is known (see
above) that the operator −�a has an eigenvalue close to the threshold. Consider the breaking
of symmetry, namely, let d1 �= d3 (d3 < d1 < d2 < 2d3). In this case there is no reduction
of the problem, and the mentioned eigenvalue becomes a resonance (quasi-eigenvalue). This
effect is very important for the description of transport properties of the system. This is why it
is interesting to look for this transition ‘resonance-eigenvalue’. We deal with the asymptotics
(in a) of the resonance. To look for the asymptotics of the resonance when d3 → d1 we
suppose that d2

1 = d2
3 + χa6, χ > 0. The main goal of the paper is to find the first terms of the

asymptotic expansions of the resonance. We consider the Helmholtz equation (� + k2)ϕa = 0
with the Dirichlet boundary condition in a system of three coupled waveguides and we seek
the quasi-eigenvalueλa = k2

a close to the threshold π2

d2
3

. The method of matching of asymptotic

expansions of the solutions of boundary value problems is used.

2. Resonance asymptotics

Let us introduce the local coordinate system x
(12)

1 , x
(12)

2

(
x

(23)

1 , x
(23)

2

)
with the origin at the

centre of the opening �12 (�23) in such a way that the axis Ox
(12)

1

(
Ox

(23)

1

)
coincides with the

waveguide wall and x
(12)

2 > 0
(
x

(23)

2 > 0
)

in �1 (�2). We seek the asymptotic expansion of
the quasi-eigenvalue in the following form:(

π2

d2
3

− k2
a

) 1
2

=
∞∑

j=2

[(j−1)/2]∑
i=0

kjia
j

(
ln

a

a0

)i

. (2)

Here, a0 is some characteristic length unit. We find some first coefficients kji in
equation (2). The expansions of the corresponding quasi-eigenfunction in different domains
are as follows:

ϕa(x) = −
(

π2

d2
3

− k2
a

) 1
2 ∞∑

j=0

ajP
(1)
j+1

(
Dy, ln

a

a0

)
G1(x, y, k)|y=X12 x ∈ �1

∖
S12

a0(
a
a0

)1/2

(3)

ϕa(x) =
∞∑

j=1

[(j−1)/2]∑
i=0

v
(12)
ji

(x

a

)
aj

(
ln

a

a0

)i

x ∈ S12
2a0(

a
a0

)1/2 (4)

ϕa(x) =
(

π2

d2
3

− k2
a

) 1
2 ∞∑

j=0

aj

(
P

(21)
j+1

(
Dy, ln

a

a0

)
G2(x, y, k)|y=X12

+ P
(23)
j+1

(
Dy, ln

a

a0

)
G2(x, y, k)|y=X23

)

x ∈ �2
∖(

S12
2a0(

a
a0

)1/2 ∪ S23
2a0(

a
a0

)1/2

)
(5)

ϕa(x) =
∞∑

j=1

[(j−1)/2]∑
i=0

v
(23)
ji

(x

a

)
aj

(
ln

a

a0

)i

x ∈ S23
2a0(

a
a0

)1/2 (6)
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ϕa(x) = −
(

π2

d2
3

− k2
a

) 1
2 ∞∑

j=0

ajP
(3)

j+1

(
Dy, ln

a

a0

)
G3(x, y, k)|y=X23 x ∈ �3∖S23

2a0(
a
a0

)1/2 .

(7)
Here Xij is the centre of the opening �ij , S

ij
t is the sphere of the radius t centred at Xij , and

vji ∈ W 1
2,loc(�

1 ∪ �2 ∪ �3). P (rs)
m and P (r)

m are some polynomials on Dy (derivative operator)
and ln a

a0
, having the forms

P
(r)

1

(
Dy, ln

a

a0

)
= ra

(1)

10

∂

∂ny

P (r)
m

(
Dy, ln

a

a0

)

=
m−1∑
j=1

[(j−1)/2]∑
i=0

ra
(m)
ji

(
ln

a

a0

)i

Dm−j+i
y m = 2, 3, 4, . . . (8)

P
(rs)

1

(
Dy, ln

a

a0

)
= rsa

(1)

10

∂

∂ny

P (rs)
m

(
Dy, ln

a

a0

)

=
m−1∑
j=1

[(j−1)/2]∑
i=0

rsa
(m)

ji

(
ln

a

a0

)i

Dm−j+i
y m = 2, 3, 4, . . . (9)

where ra
(m)
ji , rsa

(m)
ji are some constants, D

2j+1
y = ∂2j+1

∂n
2j+1
y

, D
2j+2
y = ∂2j+2

∂ly∂n
2j+1
y

; l = (1, 0), n =
(0,−1). Gi is the Dirichlet Green function for the Helmholtz equation in the waveguide �i :

Gs(x, y, k) =
∞∑

n=1

1

ds

(
n2π2

ds

− k2

)−1/2

sin
nπx2

ds

sin
nπy2

ds

× exp

(
−

(
n2π2

ds

− k2

)1/2

|x1 − y1|
)

. (10)

The derivative of the Green function can be represented in a neighbourhood of the
boundary point for spectral parameter close to π2

d2
3

in the form:

Dj
yGs(x, y, k)|y=Xpq

= 1

ds

sin
πx2

ds

Dj
x

(
sin

πx2

ds

)∣∣∣∣
x=Xpq

(
π2

d2
s

− k2
a

)− 1
2

+ 	j(x, k) ln
r

a0
+ g

(s)

j (x, k) +
[j/2]∑
i=0

j−2i−1∑
t=0

b
(j)

it (k)r−j+2(i+t) sin(j − 2i)θ. (11)

Here (r, θ) are the polar coordinates. Functions b
(j)

it (k),	j(x, k), g
(l)

j (x, k) are analytic in

k in a neighbourhood of π2

d3
; 	j(x, k) ∈ C∞(�2) and are continuous in respect to x2. It is

known (see, for example, [13]) that g
(l)
j (x, k) ∈ C∞(�l) and

b
(j)

00 = (−1)[(j+1)/2](j − 1)!

π
b

(3)
10 = k2

2π
(12)

	1n(0, k) = − k2

2π
. (13)

Functions v
(mn)

ji (x/a) are solutions of boundary value problems which are obtained by the
following way. We substitute series (2), (4) and (6) into the Helmholtz equation (for k = ka).
Then we replace the variables in the local coordinates ξ = x/a and make equal terms of the
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same order of a and ln a. Taking the formal limit a → 0, we obtain the following boundary
problem for v

(mn)
ji (x/a)

�ξv
(mn)
ji = −

j−3∑
p=0

[p/2]−1∑
q=0

�pqv
(mn)
j−p−2, i−q ξ ∈ R2∖γ, v

(mn)
ji = 0, ξ ∈ γ̄ (14)

where γ̄ = {ξ : ξ2 = 0, ξ1 ∈ (−∞,−1] ∪ [1,∞)}, and �pq are the coefficients of the series

k2
a =

∑
p

∑
q

�pqa
p

(
ln

a

a0

)q

.

Let us define the operator M
(ij)
pq on sums U(x, a) of type (3), (5) and (7) in local coordinates

with the centre Xij . Replace
(

π2

d2
3

− k2
a

) 1
2 by equation (2) and terms with d1 in equation (3) by

the following manner. We expand coefficients of U(x, a) in an asymptotic series for r → ∞
and change the variables ξ = x

a
(ln r is replaced by ln ρ + ln a). We denote the sum of all

terms of the type ap (ln a)q H(ξ) by Mpq . Let M
(ij)
p = ∑

q M
(ij)
pq .

To match asymptotic expansions (3) and (4), (4) and (5), (5) and (6), (6) and (7), we
should make equal the coefficients in the terms of the same order ap

(
ln a

a0

)q
. To find k20 it is

sufficient to consider the terms of order a. Taking into account equations (11)–(13), we have

lim
k→ π

d3

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(1)

1 G1(x
(12), y, k)|y=X12

)
= π

d2
3

1a
(1)

10 sin
πx

(12)
2

d3

lim
k→ π

d3

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)
1 G2(x

(12), y, ka)|y=X12 + P
(23)
1 G2(x

(12), y, ka)|y=X23

) = 0

lim
k→ π

d3

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)
1 G2(x

(23), y, ka)|y=X12 + P
(23)
1 G2(x

(23), y, ka)|y=X23

) = 0

lim
k→ π

d3

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(3)
1 G3(x

(23), y, k)|y=X23

)
= π

d2
3

3a
(1)
10 sin

πx
(23)
2

d3
.

Consequently,

a−1M
(12)
1

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(1)
1 G1(x

(12), y, ka)|y=X12

)

= π2

d3
3

1a
(1)
10 ρ12 sin θ12 +

1

π
k20

1a
(1)
10 ρ−1

12 sin θ12 (15)

a−1M
(12)

1

((
π2

d2
3

− k2
a

) 1
2 (

P
(21)

1 G2(x
(12), y, ka)|y=X12 + P

(23)

1 G2(x
(12), y, ka)|y=X23

))

= − 1

π
k20

21a
(1)

10 ρ−1
12 sin θ12 (16)

a−1M
(23)
1

((
π2

d2
3

− k2
a

) 1
2

P
(21)
1 G2(x

(23), y, ka)|y=X12 + P
(23)
1 G2(x

(23), y, ka)|y=X23

)

= − 1

π
k20

23a
(1)
10 ρ−1

23 sin θ23 (17)
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a−1M
(23)

1

((
π2

d2
3

− k2
a

) 1
2

P
(3)

1 G3(x
(23), y, ka)|y=X23

)

= π2

d3
3

3a
(1)
10 ρ23 sin θ23 +

1

π
k20

3a
(1)
10 ρ−1

23 sin θ23. (18)

To match the terms (15) and (18) increasing at infinity, we choose the following solutions
of equation (14)

v
(12)
10 (ξ12) = α12Y1(ξ

∗
12) (19)

v
(23)

10 (ξ23) = α23Y1(ξ23) (20)

where α12 and α23 are some constants. Yq(ξmn) has the following asymptotics

Yq(ξmn) =
{−∑∞

j=1 cqjρ
−j
mn sin jθmn ξmn,2 > 0

ρq sin qθ +
∑∞

j=1 cqjρ
−j
mn sin jθmn ξmn,2 < 0.

(21)

The existence of such solutions is well known [17–19]. Here ξmn = (ξmn,1, ξmn,2), ξ∗
mn =

(ξmn,1, −ξmn,2), cqj is real, c11 = 1/4, c21 = 2c12 = 0, c13 = 1/16, c31 = 3/16. Making
equal coefficients of the terms ρ12 sin θ12, ρ

−1
12 sin θ12 in equations (15) and (19), (19) and

(16), and also coefficients of the terms ρ23 sin θ23, ρ
−1
23 sin θ23 in equations (17) and (20), (20)

and (18), we obtain the following homogeneous system of equations for the determination of
1a

(1)

10 , 21a
(1)

10 , 23a
(1)

10 , 3a
(1)

10 , α12, α23:


π2

d3
3

1a
(1)

10 = −α12

k20
π

1a
(1)
10 = − 1

4α12

1
4α12 = − 1

π
k20

21a
(1)
10

− 1
π
k20

23a
(1)
10 = − 1

4α23

α23 = π2

d3
3

3a
(1)

10

1
4α23 = 1

π
k20

3a
(1)

10 .

(22)

Excluding α12 and α23, we reduce the system to the form


π2

d3
3

1a
(1)
10 − 4k20

π
21a

(1)
10 = 0

k20
π

1a
(1)

10 − k20
π

21a
(1)

10 = 0
π2

d3
3

3a
(1)

10 − 4k20
π

23a
(1)

10 = 0

k20
π

3a
(1)
10 − k20

π
23a

(1)
10 = 0.

(23)

The condition of non-trivial solvability of the system gives us the equation for the determination
of k20:

k2
20

π2

(
4k20

π
− π2

d3
3

)2

= 0. (24)

We choose such a solution of equation (24) for which all values of 1a
(1)
10 , 21a

(1)
10 , 23a

(1)
10 , 1a

(3)
10

can be non-zero, namely,

k20 = π3

4d3
3

. (25)
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For this value of k20 we obtain from equation (23) the following relations

21a
(1)

10 = 1a
(1)

10 (26)

23a
(1)

10 = 3a
(1)

10 . (27)

Furthermore, we have

lim
k→ π

d−

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(1)
3 G1(x

(12), y, k)|y=X12

)
= −π3

d4
3

1a
(3)
10 sin

πx
(12)

2

d3

lim
k→ π

d−

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)
1 G2(x

(12), y, ka)|y=X12 + P
(23)
1 G2(x

(12), y, ka)|y=X23

) = 0

lim
k→ π

d−

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)

1 G2(x
(23), y, ka)|y=X12 + P

(23)

1 G2(x
(23), y, ka)|y=X23

) = 0

lim
k→ π

d−

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(3)
1 G3(x

(23), y, k)|y=X23

)
= −π3

d4
3

3a
(3)
10 sin

πx
(23)

2

d3
.

Hence,

a−1M
(12)

1

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(1)

3 G1(x
(12), y, ka)|y=X12

)
= − 2

π
k20

1a
(3)

10 ρ−3
12 sin 3θ12 (28)

a−1M
(12)

1

(
−

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)

1 G2(x
(12), y, ka)|y=X12 + P

(23)

1 G2(x
(12), y, ka)|y=X23

))

= 2

π
k20

21a
(3)
10 ρ−3

12 sin 3θ12 (29)

a−1M
(23)

1

(
−

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)

1 G2(x
(23), y, ka)|y=X12 + P

(23)

1 G2(x
(23), y, ka)|y=X23

))

= 2

π
k20

23a
(3)

10 ρ−3
23 sin 3θ23 (30)

a−1M
(23)

1

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(3)

3 G2(x
(23), y, ka)|y=X23

)
= − 2

π
k20

3a
(3)

10 ρ−3
23 sin 3θ23. (31)

Making equal the coefficients of the terms ρ−3
12 sin θ12 in equations (28) and (19),

(19) and (29), and also the coefficients of the terms ρ−3
23 sin θ23 in equations (30)

and (20), (20) and (31), we come to the following system for the determination of
1a

(3)
10 , 21a

(3)
10 , 23a

(3)
10 , 23a

(3)
10 , 3a

(3)
10 , α12, α23:



− 2k20
π

1a
(3)
10 = − 1

16α12

1
16α12 = 2k20

π
21a

(3)
10

2k20
π

23a
(3)
10 = − 1

16α23

1
16α23 = − 2k20

π
3a

(3)
10 .

(32)
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Replacing α12 by − 4k20
π

1a
(1)
10 and α23 by 4k20

π
3a

(1)
10 in accordance with the second and the

last equations of the system (22) and taking into account that k20 �= 0, we can obtain the
relations between 1a

(3)

10 , 21a
(3)

10 , 23a
(3)

10 , 23a
(3)

10 , 3a
(3)

10 and 1a
(1)

10 , 3a
(1)

10 :

21a
(3)
10 = 1a

(3)
10 = −1

8
1a

(1)
10 (33)

23a
(3)

10 = 3a
(3)

10 = −1

8
3a

(1)

10 . (34)

The value of k40 is determined by matching the terms of order a3 in equations (3) and
(4), (4) and (5), (5) and (6), (6) and (7). Firstly, we expand functions g

(1)
1 (x(12), k),

g
(2)
1 (x(12), k), 	1(x

(12), k) in a series in powers of x
(12)
1 , x

(12)
2 , and functions g

(2)
1 (x(23), k),

g
(3)

1 (x(23), k),	1(x
(23), k) in a series in powers of x

(23)

1 , x
(23)

2 in the neighbourhood of X12.
Taking into account that function 	j(x

(12), k) is antisymmetric with respect to x
(12)

2 , we obtain

	j(0, k) = 0
∂i	j(x

(12), k)(
∂x

(12)
1

)i

∣∣∣∣∣
x(12)=(0,0)

= 0.

We also have

G1(x
(12), y, k)|

x
(12)
2 =0 ≡ 0

and

Dj
yG1(x

(12), y, k)|
y=X12,x

(12)
2 =0 ≡ 0.

We obtain from equation (11)

g
(1)

j (x(12), k)|
x

(12)
2 =0 = Dj

yG1(x
(12), y, k)|

y=X12,x
(12)
2 =0 − 2

d1
sin

πx
(12)

2

d1

∣∣∣∣∣
x

(12)
2 =0

× Dj
x

(
sin

πx
(12)
2

d1

)∣∣∣∣∣
x

(12)
2 =0

(
π2

d2
3

− k2
a

)− 1
2

− 	1(x
(12), k)|

x
(12)
2 =0 ln

r12

a0

−
[j/2]∑
i=0

j−2i−1∑
t=0

b
(j)

it (k)r
−j+2(i+t)

12 sin(j − 2i)θ12|θ12=0 ≡ 0,

and hence,

∂g
(1)
j (x(12), k)

∂x
(12)
1

∣∣∣∣∣
x(12)=(0,0)

= 0.

We introduce the following notation

g(1)
x = ∂g

(1)
1 (x(12), k)

∂x
(12)

2

∣∣∣∣∣
x(12)=(0,0),k=k0

where k0 = π2

d2
3

. We obtain from equation (13)

∂i	j(x
(12), k)(

∂x
(12)
2

)i

∣∣∣∣∣
x(12)=(0,0)

= k2

2π
.

Let us consider also the functions 	j(x
(23), k), g

(2)
j , g

(3)
j ,G2,G3 in an analogous way. Then

we replace the function sin πx
(12)
2

d1
by a series in powers of x

(12)
2 , we make the transition to
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new variables ρ12, θ12 and we use the identity ρ3
12 sin3 θ12 = ρ3

12(3 sin θ12 − sin 3θ12)/4. The

analogous transformation is made with the function sin πx
(23)
2

d1
.

Let us construct the asymptotics of P
(21)

1 G2(x, y, k)|y=X12 in the neighbourhood of X23

and P
(23)

1 G2(x, y, k)|y=X23 in the neighbourhood of X12. From equation (10) we have(
π2

d2
3

− k2
a

) 1
2

P
(21)

1 G2(x
(12), y, ka)|y=X12 = −π21a

(1)
10

d2d3

√
π2 − k2

ad
2
3

π2 − k2
ad

2
2

sin
πx

(12)

2

d2

− π

d2
2

(
π2

d2
3

− k2
a

) 1
2 ∞∑

n=2

sin
nπx

(12)
2

d2
exp

(
−

(
n2π2

dl

− k2
a

) 1
2

|x1|
)

. (35)

Note that only the first term on the right-hand side is imaginary, and others are real.

a−3M
(12)
3

(
−

(
π2

d2
3

− k2
a

) 1
2 (

P
(1)
1 + P

(1)
3

)
G1(x

(12), y, ka)|y=X12

)

= π4

24d5
3

1a
(1)

10 ρ3
12 sin 3θ12 − π4

8d5
3

1a
(1)

10 ρ3
12 sin θ12 − π

2d2
3

1a
(1)

10 k20ρ12 ln ρ12 sin θ12

+

(
π4χ

2k2
20d

7
3

1a
(1)
10 − 1a

(1)
10 g(1)

x − π4

d5
3

1a
(3)
10

)
ρ12 sin θ12

+

(
1

π
k40

1a
(1)
10 − π

2d2
3

k20
1a

(3)
10

)
ρ−1

12 sin θ12 − k20
1a

(3)
10 b

(3)
01 (k0)ρ

−1
12 sin 3θ12 (36)

a−3M
(12)

30

((
π2

d2
2

− k2
a

) 1
2 ((

P
(21)

1 + P
(21)

3

)
G2(x

(12), y, ka)|y=X12

+
(
P

(23)
1 + P

(23)
3

)
G2(x

(12), y, ka)|y=X23

))

=




g2

x − πd3

d2
2

√
d2

3 − d2
2


 k20

21a
(1)
10 + k20f

23a
(1)
10


 ρ12 sin θ12

+
π

2d2
3

21a
(1)

10 k20ρ12 ln ρ12 sin θ12 −
(

1

π
k40

21a
(1)

10 − π

2d2
3

k20
21a

(3)

10

)
ρ−1

12 sin θ12

+ k20
21a

(3)
10 b

(3)
01 (k0)ρ

−1
12 sin 3θ12 (37)

a−3M
(23)

30

((
π2

d2
2

− k2
a

) 1
2 ((

P
(21)

1 + P
(21)

3

)
G2(x

(23), y, ka)|y=X12

+
(
P

(23)
1 + P

(23)
3

)
G2(x

(23), y, ka)|y=X23

))

=




g2

x − πd3

d2
2

√
d2

3 − d2
2


 k20

23a
(1)
10 + k20f

21a
(1)
10


 ρ23 sin θ23

+
π

2d2
3

23a
(1)

10 k20ρ23 ln ρ23 sin θ23 −
(

1

π
k40

23a
(1)

10 − π

2d2
3

k20
23a

(3)

10

)
ρ−1

23 sin θ23

+ k20
23a

(3)
10 b

(3)
01 (k0)ρ

−1
23 sin 3θ23 (38)
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a−3M
(23)

30

(
−

(
π2

d2
3

− k2
a

) 1
2 (

P
(1)

1 + P
(1)

3

)
G3(x

(23), y, ka)|y=X23

)

= π4

24d5
3

3a
(1)
10 ρ3

23 sin 3θ23 − π4

8d5
3

3a
(1)
10 ρ3

23 sin θ23 − π

2d2
3

3a
(1)
10 k20ρ23 ln ρ23 sin θ23

+

(
−3a

(1)
10 g(1)

x − π4

d5
3

3a
(3)
10

)
ρ23 sin θ23

+

(
1

π
k40

3a
(1)

10 − π

2d2
3

k20
3a

(3)

10

)
ρ−1

23 sin θ23 − k20
3a

(3)

10 b
(3)

01 (k0)ρ
−1
23 sin 3θ23. (39)

Let us construct the asymptotics of v
(12)
30 (ξ12) and v

(23)
30 (ξ23). In accordance with

equation (14), we come to the following boundary problem for v
(12)

30 (ξ12):

�ξ12v
(12)
30 (ξ12) = −k2

0v10(ξ12) ξ12 ∈ R2\γ̄12

v30(ξ12) = 0 ξ12 ∈ γ̄12

(40)

where γ̄12 = {ξ12 : ξ12,2 = 0, ξ12,1 ∈ (−∞,−1] ∪ [1,∞)}. Let ṽ
(12)
30 (ξ12) be a particular

solution of the inhomogeneous Laplace equation (Poisson equation) which satisfies the
boundary condition, and let v̂

(12)
30 (ξ12)

(
v̂

(12)
30 (ξ12) = v

(12)
30 (ξ12) − ṽ

(12)
30 (ξ12)

)
be the solution

of the corresponding homogeneous equation, satisfying the boundary condition. We can
easily show (by substitution into equation (40)) that the asymptotics of ṽ

(12)
30 (ξ12) is as follows:

ṽ
(12)

30 (ξ12) = π2

d3
3

1a
(1)

10




− 1
8ρ3

12 sin θ12 − c11
2 ρ12 ln ρ12 sin θ12

+
∑∞

j=3
c1j ρ

2−j

12 sin jθ12

4(j−1)
ξ12,2 > 0

+ c11
2 ρ12 ln ρ12 sin θ12 − ∑∞

j=3
c1j ρ

2−j

12 sin jθ12

4(j−1)
ξ12,2 < 0.

(41)

To match the terms of (36) and (37) increasing at infinity, we choose the following form
of v̂

(12)

30 (ξ12)

v̂
(12)

30 (ξ12) = β12Y1(ξ12) + γ12Y1(ξ
∗
12) + δ12Y3(ξ

∗
12) (42)

where β12, γ12, δ12 are constants. Finally, the asymptotics of v
(12)
30 (ξ12) has the following form:

v
(12)
30 (ξ12) = −δ12ρ

3
12 sin 3θ12 − γ12ρ12 sin θ12 − π2

8d3
3

1a
(1)
10 ρ3

12 sin θ12

− π2c11
1a

(1)
10

2d3
3

ρ12 ln ρ12 sin θ12 +
π21a

(1)
10

d3
3

∞∑
j=3

c1j ρ
2−j

12 sin jθ12

4(j − 1)

−
∞∑

j=1

((β12 + γ12)c1j + δ12c3j )ρ
−j

12 sin jθ12 ξ12,2 > 0

v
(12)
30 (ξ12) = β12ρ12 sin θ12 +

π2c11
1a

(1)

10

2d3
3

ρ12 ln ρ12 sin θ12 − π21a
(1)

10

d3
3

∞∑
j=3

c1j ρ
2−j

12 sin jθ12

4(j − 1)

+
∞∑

j=1

((β12 + γ12)c1j + δ12c3j )ρ
−j

12 sin jθ12 ξ12,2 < 0.

(43)



Three coupled waveguides 1665

We construct the asymptotics of v
(23)
30 (ξ23) analogously and obtain

v
(23)
30 (ξ23) = −γ23ρ23 sin θ23 +

π2c11
3a

(1)

10

2d3
3

ρ23 ln ρ23 sin θ23 − π23a
(1)

10

d3
3

∞∑
j=3

c1jρ
2−j

23 sin jθ23

4(j − 1)

−
∞∑

j=1

((β23 + γ23)c1j + δ23c3j )ρ
−j

23 sin jθ23 ξ23,2 > 0

v
(23)

30 (ξ23) = δ23ρ
3
23 sin 3θ23 + β23ρ23 sin θ23 − π2

8d3
3

3a
(1)

10 ρ3
23 sin θ23

− π2c11
3a

(1)

10

2d3
3

ρ23 ln ρ23 sin θ23 +
π23a

(1)

10

d3
3

∞∑
j=3

c1j ρ
2−j

23 sin jθ23

4(j − 1)

+
∞∑

j=1

((β23 + γ23)c1j + δ23c3j )ρ
−j

23 sin jθ23 ξ23,2 < 0.

(44)

Making equal the coefficients of the terms ρ3
12 sin 3θ12, ρ12 sin θ12, ρ−1

12 sin θ12 in
equations (36) and (43), (43) and (37), and also coefficients of the terms ρ3

23 sin 3θ23,

ρ23 sin θ23, ρ
−1
23 sin θ23 in equations (38) and (44), (44) and (39), we obtain the following linear

system for the determination of 1a
(3)
10 , 21a

(3)
10 , 23a

(3)
10 , 23a

(3)
10 , 3a

(3)
10 , β12, γ12, δ12, β23, γ23, δ23:




π4

24d5
3

1a
(1)

10 = −δ12

π4χ

2k2
20d

7
3

1a
(1)

10 − 1a
(1)

10 g(1)
x − π4

d5
3

1a
(3)

10 = −γ12

1
π
k40

1a
(1)
10 − π

2d2
3
k20

1a
(3)
10 = − β12+γ12

4 − 3δ12
16

β12 =
(

g2
x − πd3

d2
2

√
d2

3 −d2
2

)
k20

21a
(1)

10 + k20f
23a

(1)

10

β12+γ12

4 + 3δ12
16 = − 1

π
k40

21a
(1)
10 + π

2d2
3
k20

21a
(3)
10(

g2
x − πd3

d2
2

√
d2

3 −d2
2

)
k20

23a
(1)
10 + k20f

21a
(1)
10 = −γ23

− 1
π
k40

23a
(1)

10 + π

2d2
3
k20

23a
(3)

10 = − β23+γ23

4 − δ23
4

δ23 = π4

24d5
3

3a
(1)

10

β23 = −3a
(1)

10 g(1)
x − π4

d5
3

3a
(3)

10

β23+γ23

4 + 3δ23
16 = 1

π
k40

3a
(1)
10 − π

2d2
3
k20

3a
(3)
10 .

(45)

Excluding β12, γ12, δ12, β23, γ23, δ23,
21a

(3)
10 , 23a

(3)
10 , replacing 1a

(3)
10 by − 1

8
1a

(1)
10 , and 3a

(3)
10

by − 1
8

3a
(1)

10 (in accordance with equations (33) and (34) and substituting the value of k20 from

equation (25), we come to the following system of two equations for the determination of 1a
(1)

10

and 3a
(1)
10 :




(
π3

4d3
3

(
g1

x + g2
x

) − π4

4d2
3 d2

2

√
d2

3 −d2
2

+ 4k40
π

− 3π4

32d5
3

− 8χ

π2d3

)
1a

(1)

10 + 1
4k20f

3a
(1)

10 = 0

1
4k20f

1a
(1)

10 +
(

π3

4d3
3

(
g3

x + g2
x

) − π4

4d2
3 d2

2

√
d2

3 −d2
2

+ 4k40
π

− 3π4

32d5
3

)
3a

(1)

10 = 0.
(46)



1666 I Yu Popov and S V Frolov

The condition of non-trivial solvability of equation (46) gives us the equation for the
determination of k40:
 π3

4d3
3

(
g1

x + g2
x

) − π4

4d2
3d2

2

√
d2

3 − d2
2

+
4k40

π
− 3π4

32d5
3

− 8χ

π2d3




×

 π3

4d3
3

(
g3

x + g2
x

) − π4

4d2
3d2

2

√
d2

3 − d2
2

+
4k40

π
− 3π4

32d5
3


 = π6

16d6
3

f 2. (47)

Consequently, we obtain the following value of k40

k40 = − π4

32d3
3

(
g(1)

x + g(2)
x

)
+

π5

16d2
3d

2
2

√
d2

3 − d2
2

+
3π5

128d5
3

− χ

πd3

+
1

2


3


 π4

16d3
3

g(2)
x − π5

16d2
3d

2
2

√
d2

3 − d2
2

− 3π5

64d5
3




2

+

(
π4

16d3
3

(
g(1)

x + g(2)
x

)
+

2χ

πd3

)2

+
π8f 2

256d6
3

) 1
2

. (48)

For χ = 0 we obtain

k40 = π4

16d3
3

(
3π

8d2
3

− (
g(13)

x + g2
x

)
+ Re f

)
(49)

where g(13)
x = g(1)

x = g(3)
x .

To find k41 we match terms of order a3 ln a
a0

, and we have

a−3

(
ln

a

a0

)−1

M
(12)
31

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(1)
1 G1(x

(12), y, ka)|y=X12

)

= − π

2d2
3

1a
(1)
10 k20ρ12 sin θ12 +

1

π

1a
(1)
10 k41ρ

−1
12 sin θ12 (50)

a−3

(
ln

a

a0

)−1
(

M
(12)

31

(
π2

d2
3

− k2
a

) 1
2 (

P
(21)

1 G2(x
(12), y, ka)|y=X12

+ P
(23)
1 G2(x

(12), y, ka)|y=X23

))

= π

2d2
3

21a
(1)
10 k20ρ12 sin θ12 − 1

π

21a
(1)
10 k41ρ

−1
12 sin θ12 (51)

a−3

(
ln

a

a0

)−1

M
(23)

31

((
π2

d2
3

− k2
a

) 1
2 (

P
(21)

1 G2(x
(23), y, ka)|y=X12

+ P
(23)

1 G2(x
(23), y, ka)|y=X23

))

= π

2d2
3

23a
(1)

10 k20ρ23 sin θ23 − 1

π

23a
(1)

10 k41ρ
−1
23 sin θ23 (52)



Three coupled waveguides 1667

a−3

(
ln

a

a0

)−1

M
(23)

31

(
−

(
π2

d2
3

− k2
a

) 1
2

P
(3)

1 G3(x
(23), y, ka)|y=X23

)

= − π

2d2
3

3a
(1)

10 k20ρ23 sin θ23 +
1

π

3a
(1)

10 k41ρ
−1
23 sin θ23. (53)

To match the terms in equations (50)–(53) increasing at infinity, we choose v
(12)

31 (ξ12) and
v

(12)
31 (ξ23) as follows:

v
(12)

31 (ξ12) = η12Y1(ξ12) + µ12Y1(ξ
∗
12) (54)

v
(23)
31 (ξ23) = η23Y1(ξ23) + µ23Y1(ξ

∗
23). (55)

Making equal the terms of order ρ12 sin θ12, ρ
−1
12 sin θ12 in equations (50) and (54),

(54) and (51) and also the terms of order ρ23 sin θ23, ρ
−1
23 sin θ23 in equations (52)

and (55), (55) and (53), we come to the following linear homogeneous system for
1a

(1)
10 , 21a

(1)
10 , 23a

(1)
10 , 3a

(1)
10 , η12, µ12, η23, µ23:



− π

2d2
3

1a
(1)
10 k20 = −µ12

1
π

1a
(1)

10 k41 = −µ12+η12

4

η12 = π

2d2
3

21a
(1)
10 k20

µ12+η12

4 = − 1
π

21a
(1)

10 k41

π

2d2
3

23a
(1)
10 k20 = −µ23

− 1
π

23a
(1)

10 k41 = −µ23+η23

4

η23 = − π

2d2
3

3a
(1)
10 k20

µ12+η12

4 = 1
π

3a
(1)

10 k41.

(56)

Excluding η12, µ12, η23, µ23, we obtain the system of four equations:


(
πk20

2d2
3

+ 4k41
π

)
1a1

10 + πk20

2d2
3

21a
(1)
10 = 0

k41
1a

(1)

10 − k41
21a

(1)

10 = 0(
πk20

2d2
3

+ 4k41
π

)
3a1

10 + πk20

2d2
3

23a
(1)
10 = 0

k41
3a

(1)
10 − k41

23a
(1)
10 = 0.

(57)

The condition of non-trivial solvability of equation (57) gives us the equation for the
determination of k41:

k2
41

(
πk20

d2
3

+
4k41

π

)2

= 0. (58)

Choosing a non-zero solution, we obtain

k41 = − π2

4d2
3

k20 = − π5

16d5
3

. (59)

Let us summarize the results. The first terms of the asymptotic expansion of the resonance
are as follows:

k2
a = k2

0 − k2
20a

4 − 2k20

(
k40 + k41 ln

a

a0

)
a6 −

(
k2

40 + 2k40k41 ln
a

a0
+ k2

41

(
ln

a

a0

)2
)

a8

+ higher-order terms (60)
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where

k2
0 = π2

d2
3

k20 = π3

4d3
3

k40 = − π4

32d3
3

(
g(1)

x + g(2)
x

)
+

π5

16d2
3d

2
2

√
d2

3 − d2
2

+
3π5

128d5
3

− χ

πd3

(61)

+
1

2


3


 π4

16d3
3

g(2)
x − π5

16d2
3d

2
2

√
d2

3 − d2
2

− 3π5

64d5
3




2

+

(
π4

16d3
3

(
g(1)

x + g(2)
x

)
+

2χ

πd3

)2

+
π8f 2

256d6
3




1
2

k41 = − π5

16d5
3

.

We can see that, if χ = 0, then k40 becomes real (equation (49)). This corresponds to the
fact that in this case we have an eigenvalue instead of the resonance.

3. Discussion

The existence of eigenvalues, due to obstacles placed symmetrically in between parallel walls
having either Neumann or Dirichlet conditions imposed upon them, are well known to occur
for frequencies below the continuous spectrum or channel cut-off (threshold) and for a range
of geometrical configurations. These eigenvalues are stable with respect to small violation
of symmetry (it causes a shift of such eigenvalues only). It is more interesting to look for
eigenvalues (trapped modes) embedded in the continuous spectrum (above the threshold).
These eigenvalues are unstable with respect to small violation of symmetry. In some cases it
can remain an eigenvalue, but in other cases it can transform to a quasi-eigenvalue (resonance).
Due to this effect, it has great influence on the transport properties of the system.

The existence of trapped modes are usually proved by the variational technique [15].
Numerical approaches are developed to compute these eigenvalues for some geometrical
configurations (see, for example [20]). As for resonances, the situation is more difficult.
The method of conformal map is used in [7] to obtain an order with respect to the width of
the window for the distance between the resonance and the threshold. The asymptotics for the
resonance was obtained in [14]. The resonance influence on electron transport can be used
in nanodevices. For example, the system of three coupled waveguides (figure 1) can work as
three-posed quantum switch [21]. Namely, let d1−d3 be small, and we have an incoming wave
in �2 with the wavenumber close, for example, to the second threshold 4π2

/
d2

1 of �1. Then,
we have resonance dependence of the transmission coefficient to each channel (see figure 2).
It is easy to see that we can control the transmission to each channel by small variation of k.
There is also another method of control. The position of the resonances (and, consequently,
the position of the peaks in figure 2) depends on the width of the windows which change under
the influence of bias voltage in a standard way (see, for example [1]). Note that the described
resonance effects take place if there is a quasi-eigenvalue and not an eigenvalue. For the
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Figure 2. The dependence of the transmission coefficients α1, α2, α3 to �1,�2,�3, respectively,
on the wavenumber k near the second thresholds for the waveguides �1,�3. Dimensionless units
are used.

device to work successfully, we should ensure that there is a small difference between d1 and
d3. If d1 = d3 we have the eigenvalue. This is why it is important to look for the behaviour of
the resonance for small d1 − d3. Our result gives this description. As for qualitative results,
we show how small the order of difference d1 − d3 may be with respect to the width of the
window 2a. Namely, if

(
d2

1 − d2
3

)
a−6 → 0 the quantum switch does not work successfully.

The described effect can be used for constructing a nanoelectronic device, electron trap.
Consider three coupled waveguides with d1 �= d3. Let an electron with energy close to the
resonance k2

a come from infinity in �2. Due to the existence of the resonance there will be
an increase of electron density near the windows. We can vary the width of the quantum
waveguides in a conventional way by changing the corresponding shift voltage using metal–
oxide semiconductor (MOS) structures. Let us make d3 equal to d1. In this case we have
a boundary state instead of the resonance. If it is made during a time less than the time of
resonance decay (which is proportional to 1/�k2

a), we obtain the electron in the trap. To
exclude the electron from the trap it is sufficient to break the geometrical symmetry again.
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